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Experiments are reported on Faraday waves in a circular cylinder, which are 
internally resonant with either the subharmonic mode (with frequency a that of the 
forcing) or the superharmonic mode (with frequency equal to that of the forcing). For 
subharmonic resonance both modes achieved comparable amplitudes that were 
steady, or were modulated with one or two periods, or exhibited quasi-periodic or 
chaotic motions. A stability map of these responses is presented. Theoretical 
predictions of linear stability and growth rates are tested. Measurements of steady 
amplitudes, limit-cycle frequencies and wave slopes at breaking are presented. Some 
of the measured phase-plane trajectories are shown to have theoretical counterparts. 
For superharmonic resonance the amplitude of the superharmonic was never 
comparable with that of the Faraday wave. For low modes an energy exchange 
occurred during the initial period of growth, and a precession instability sometimes 
developed. For high modes for which both frequencies and wavenumbers are in a 2 : 1 
ratio, superharmonic resonance occurred irreproducibly ; it appeared to be over- 
whelmed by 1 : 1 interactions among the possible Faraday-wave modes. 

1. Introduction 
We consider here internal resonances between a Faraday wave, the standing wave 

that is subharmonically excited by the vertical oscillation of a cylinder of fluid, and 
either its subharmonic (which has a frequency equal to f that of the forcing) or its 
superharmonic (which has a frequency equal to that of the forcing). For the circular 
cylinder of radius R = 3.72 cm used in our experiments, the type of resonance that 
occurs depends on the fluid depth, such that, in addition to the constraint implied by 
the 2 : 1 frequency ratio, the wavenumbers satisfy certain kinematic conditions. A 
2 : 1 resonance is possible between the (0, 1)-mode wave and its subharmonic, the (1, 
0) mode, for a fluid depth of h = 0.76 cm. We investigated this configuration in detail 
and found that subharmonic resonance does exist and is robust. In  particular, we 
measured threshold forcing amplitudes for neutral stability and linear growth rates, 
which we compare with the theoretical predictions of Becker & Miles (1986). We also 
measured the hysteretic neutral stability curve and stability curves delineating 
modal amplitudes that exhibited threshold behaviour, steady-state behaviour, 
breaking, single-period limit cycles, double-period limit cycles, quasi-periodicity, and 
chaos. We found the amplitudes of the steady-state waves, the slopes of waves at  
breaking, the frequencies of the limit cycles of waves modulated with a single period, 
and the largest Lyapunov exponent for waves exhibiting chaos. 

A 2 : l  resonance is possible between the (0, 1)-mode Faraday wave and its 
superharmonic, the (0,  3)-mode, for h = 1.15 cm. We measured time series of these 
two modes, which did not display the rich dynamics present in the subharmonic case. 
We also searched for superharmonic resonance between a pair of modes for which the 
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wavenumber and frequency of the superharmonic are, respectively, twice those of 
the fundamental (cf. Wilton’s ripple for progressive waves). 

The evolution equations governing the subharmonic resonance case are isomorphic 
to  those describing an internally resonant double pendulum that is forced a t  four 
times the frequency of the dominant mode. Becker & Miles (1986) analysed this 
system and found the fixed points of the equations, local stability, Hopf bifurcations, 
and chaos. The corresponding analysis of the equations for the Faraday-wave 
problem, which are given in Miles & Henderson (1990), follow directly. Super- 
harmonic resonance has been examined by Miles (1984), Gu & Sethna (1987) and 
others. (See Miles & Henderson (1990) for a review of superharmonic resonance in 
Faraday waves.) Miles ( 1984) examined perfectly tuned superharmonic resonance 
and found steady-state solutions with no Hopf bifurcations possible. Gu & Sethna 
(1987) allowed for detuning and found that Hopf bifurcations are possible in some 
parametric regimes. However, these regimes correspond to damping rates that are 
much smaller than those observed in the present experiments. No limit cycles or 
chaotic motions are theoretically possible when damping rates are comparable with 
those observed in our experiments. 

We proceed as follows. In $2 we first present the kinematic conditions for 2:  1 
resonance between standing waves in circular cylinders, including the role of linear 
viscous damping in determining the normal modes. We then recapitulate the 
theoretical predictions of Becker & Miles (1986) for subharmonic resonance and 
relate them to Faraday waves. In  $3 we briefly describe the experimental apparatus 
and procedures, emphasizing those aspects that differ from the description in 
Henderson & Miles (1990). 

In  $4 we present the results of experiments on subharmonic resonance. Predictions 
of Becker & Miles (1986) for the neutral stability of the Faraday wave agree 
reasonably well with our data. The measured, hysteretic neutral stability curve is 
lower than the non-hysteretic curve for Faraday-wave frequencies f smaller than the 
natural frequency fi and joins the non-hysteretic curve for f > fi. (Simonelli & Gollub 
(1989) observed this phenomenon for single-mode Faraday waves in a square 
cylinder.) The measured, linear growth rates were generally larger than predicted. 
After about ten minutes of evolution time, the experiments exhibited a variety of 
wave responses that depended on the forcing parameters. Steady-state waves had 
amplitudes that were larger than those predicted by the weakly nonlinear theory of 
Becker & Miles (1986). Those waves that exhibited single-period limit cycles had 
modulation frequencies qualitatively consistent with, although less than, those 
predicted at the Hopf bifurcation. The slopes of waves on the boundary between 
breaking and steady-state amplitudes varied linearly with the deviation of the 
frequency of the Faraday wave from that of the natural frequency. Some of the 
measured attractors in phase space are similar to two of the attractors obtained 
numerically in Becker & Miles (1986) and herein. 

I n  $ 5  we present the results of experiments on superharmonic resonance. We found 
evidence of a resonance in the transient stage of evolution following the initial 
Faraday-wave growth for superharmonic resonance between low modes. The two 
modes evolved out of phase (unlike the non-resonant case, for which they are in 
phase) until they reached either a steady state or a precession instability similar to 
that observed by Gollub & Meyer (1983) for high-mode Faraday waves. For the high 
mode Wilton’s-ripple case, we found some evidence of resonance, but it occurred 
irreproducibly. In general, it appeared that superharmonic resonance was obscured 
by the many possible 1 : 1 resonances among modes with frequencies near that of the 
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Faraday wave but with different wavenumbers. Resonance of this type has been 
observed by Ciliberto & Gollub (1985). For both the low-mode and the high-mode 
cases, the amplitude of the superharmonic mode remained an order of magnitude 
smaller than that of the Faraday wave, as also was true in the non-resonant case. 

In the Appendix we examine the Wilton’s-ripple case for (high-mode) waves in a 
rectangular cylinder. We found no evidence of superharmonic resonance. Although 
many different (spatial) modes were possible that had the same natural frequency, 
the one-dimensional mode was usually the one excited. As in the circular cylinder, 
the superharmonic mode never attained an amplitude comparable to that of the 
Faraday wave. 

2. Theory 
For 2 : 1 resonance there must exist two normal modes with frequencies w1 and w,, 

such that w2 - 2w,. Here and throughout, the single subscript is an abbreviation for 
the pair of numbers associated with each mode. A subscript 1 indicates the 
fundamental mode ; a subscript 2 indicates its superharmonic. The frequencies of the 
normal modes are related to the corresponding wavenumbers by the dispersion 

where 3,, is the inviscid natural frequency of the (1, m) mode, k,, is the 
corresponding wavenumber, h is the water depth, T is the kinematic surface tension, 
and wlm is the frequency decreased by Stokes boundary-layer damping, where 6,, = 
y,,/~,, is the ratio of actual to critical damping, and y,, is the linear damping rate. 
(Expressions for S,, are available from Miles (1967), but see $3 for a discussion of the 
damping rates used herein.) 

For a circular cylinder of radius R, 1 and m indicate the number of nodal diameters 
and nodal circles, respectively, and k,, is the mth positive zero of J,(k,,R) (where J, 
is the derivative of the lth-order Bessel function). The resonance condition on 
wavenumbers is either 1, = 21, or 1, = 0;  i.e. the normal mode of the superharmonic 
either has twice as many nodal diameters as the fundamental or has zero nodal 
diameters. No restriction applies to the number of nodal circles of each mode or to 
the relationship of the magnitudes of the wavenumbers. For a cylinder of fixed 
radius, superharmonic resonances are possible for a continuum of fluid depths. For 
details, see Tadjbakhsh & Keller (1960) for resonance in gravity waves and Concus 
(1962) for capillary-gravity waves. Becker & Miles (1991) show that resonance also 
exists for some modes in infinite depths. 

To obtain the evolution equations for the modes participating in subharmonic 
resonance, we follow Miles (1984; see also Miles & Henderson 1990) and expand the 
surface displacement in the form 

where the $, form a complete set of orthogonal modes ($o = constant is ruled out by 
conservation of mass), 

7jl,(t) = l , [ p , (~ )cosno t+q , (~ ) s inno t ]  (n = 1,2), (3) 

are the corresponding generalized coordinates, T = ewt is a slow time, the forcing 
frequency is 4w, 

(4) e = a, k,  tanh k,h 
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is a small parameter ( E  4 1 implies weak nonlinearity), and 
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1, = 4ea1 = l1(ZY 
a 2 1 1  

are the lengthscales of the dimensionless amplitudes p ,  and q,, where 

ai = (ki tanh ki h)- l ,  

= Clm,[1 + i ( k ; - k k - - ' , )  a m  a,], 

( 5 4  

and S is the cross-sectional area. For subharmonic resonance, here and in $4, the 
normal mode of the Faraday wave is indicated by the subscript 2 ,  while the normal 
mode of its subharmonic is indicated by the subscript 1 .  The normal modes for the 
present experiments on subharmonic resonance are 

@2 = N ,  ~ , ( k , ,  r ) ,  $l = N~ wl0 r )  cos e, b )  

where k ,  = k,,, k ,  = k,,, 

1 2 kl,R 
N2 = Jo(ko1 R )  ' N1 = [ ( k l o R ) 2 - l ]  J , (k , ,R)'  

The evolution equations for the fundamental and Faraday modes are 

Pl  + a1 P I  = -P1 41 -P2 41 +Pl 9z> 
Q1+ a1 Q1 = P1 Pl -P1 P2 -41 423 

P 2  + a2 P2 = -P2 q 2  +242 + P l  41, 

Q2 +a2 9 2  = P 2  P2 +2P2 -a(P; - 4 3  

where 

is a tuning parameter (the sign of which is opposite that in Becker & Miles 1986), and 
a, = n&,/c is a damping parameter. 

The linear growth rate for the k,  (Faraday) mode, which ultimately loses stability 
to the k, mode, is found by setting p ,  = q1 = 0 for small times, and solving for p ,  and 
qz. For initial times, p, ,  q2 - exp ( ~ w y ,  t ) ,  where 

yc = - a 2 + ( 4 - ~ $ .  (9) 
No growth, or yc = 0, implies neutral stability, and the threshold amplitude at which 
the subharmonic waves with frequency f2 are excited is 

a, = [ k ,  tanh (k, h)]-' 

Becker & Miles (1986) obtain (7) from their analysis of a double pendulum. Here 
we recapitulate the results of their local stability analysis from which they obtain the 
criterion for stability of the plane surface, the fixed points for the wavefields, the 
location in parameter space of the Hopf bifurcations, and the frequencies of the 
resulting limit cycles a t  the Hopf bifurcations. In terms of Faraday waves, the plane 
surface is stable if 

( 1 1 )  y = ai+Pi-4 > 0 
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(which is (9) with yc = 0). If (11) is not satisfied, the waves grow and achieve the 
following steady-state (dimensional) amplitudes. The amplitude of the Faraday 
wave is 

and that of its subharmonic is 

a1 = 11 N ~ ( P ;  + q$ = 1/2 I ~ N , ( P , P ~  - a1 a 2  [4(a; + K )  - (011 82 + a2 8~~19)". (13 )  

4 E 1 + y + 4 a 1 a 2  > 0, 2E, (14% b)  

The necessary and sufficient conditions for the stability of these waves are 

and 

where E 1 -1 - 2(P;+q;1, E2 = (P;+Qi) (15a, b)  
are the non-dimensional energies of each mode. A Hopf bifurcation occurs when D is 
negative. The frequency of the resulting limit cycle is given by 

Miles (1984) gives the analogous development for superharmonic resonance. Here 
we need only consider the threshold amplitude for neutral stability, which is given 
bv ., 

a, = [k ,  tanh (k1h)]-' 

where, here and in $5,  the subscript 1 indicates the normal mode of the Faraday 
wave, a 2 indicates the normal mode of its superharmonic, and the forcing frequency 
is 2w. We also note that the superharmonic resonance, e E a, k, tanh k, h. 

3. Experimental apparatus and procedures 
The experimental apparatus is the same as that described by Henderson & Miles 

(1990). It consisted of a circular (radius = 3.72 cm) glass cylinder oscillated vertically 
by a Bruel & Kjaer Electromagnetic shaker. A VAXstation I1 provided the 
command signal for all experiments except for measurements of the hysteresis curve, 
for which a Textronix FG 501A function generator provided command. A non- 
contacting proximity sensor created a signal proportional to the cylinder motion. A 
servo-controller compared this signal to the command signal and constantly 
corrected the cylinder motion to follow that programmed. The fluid was distilled 
water filtered of organics and particles greater than 0 .2  pm with Kodak Photo Flo 
200 solution added in the ratio of 80: 1 (water to Photo Flo), such that the surface 
tension, measured with a Fisher Model 20 tensiometer, was 42.3 dyn/cm at 23 "C. 

The (effective) viscosity of the fluid was calculated from equations (2.19)-(2.21) of 
Henderson & Miles (1990), using the measured, linear decay rates. For the 
experiments on subharmonic resonance, the effective viscosity of v = 0.010 cm2/s 
inferred from this calculation agreed with the value for clean water. The effective 
value for low-mode superharmonic resonance was v = 0.016 cmz/s. For high-mode 
superharmonic resonance, we could not measure the damping rates of the 
superharmonic modes directly (the upper limit for our damping measurements was 



454 D .  M .  Henderson and J .  W.  Miles 

10 Hz). Hence, we used the value for the lower modes (at  the appropriate depth) of 
v = 0.030 cm2/s. (See Henderson & Miles (1990) for a discussion of damping 
measurements.) The effective viscosity depended on the fluid depth ; however, 
regardless of its value, the decay rate was linear and provided reasonable agreement 
between predicted and measured natural frequencies. 

In  the experiments on subharmonic resonance we found that the depth had to be 
monitored carefully. The depth was not critical for the occurrence of the subharmonic 
resonance ; however, reproducibility of the depth was critical for reproducible results. 
The bottom of the circular cylinder was nearly flat with the centre raised about 
0.01 cm. The fluid evaporated a t  a maximum rate of about 0.002 mm/h. (This rate 
was not constant; it varied from hour to hour and was usually much less than 
0.002 mm/h.) As a consequence, no one measurement could require more time than 
about thirty minutes, after which time we measured the depth in the centre of the 
cylinder (accurate to k0.02 mm), and added fluid accordingly until h = 7.60 mm. A 
Lory Type C point gauge in conjunction with a dial micrometer accurate to 0.01 mm 
was used to measure the depth. We cleaned the cylinder and changed the fluid every 
two hours because experiments performed after this period were sometimes 
irreproducible. This irreproducibility could have been a consequence of temporal 
changes in the surface-film or of fallout that settled on the bottom of the cylinder. 

To measure the neutral stability curve, we fixed the forcing frequency (known to 
Hz) and varied the forcing amplitude a,, using the VAXstation I1 for the 

command signal. For each a, the wavemaker was started from rest and given five 
minutes to excite a wave. In  this way, we converged upon a threshold forcing 
amplitude to k0.005 mm. A Textronix FG 501A function generator provided the 
command signal for measurements of the threshold hysteresis curve. Again, for a 
fixed frequency (known to Hz), we varied the forcing amplitude. We started 
with an a, for which a wave was present and decreased it until the wave died. In  
measuring the hysteresis curve, we found that for f much less than f2 ,  the waves 
tended to break and that breaking of a few minutes duration entrapped small air 
bubbles into the fluid, which rendered the results irreproducible. Hence, we cleaned 
the cylinder and added fresh fluid after each experiment involving breaking waves. 

Surface displacements were measured with an in situ capacitance probe with a 
diameter of 1.15 mm. For experiments on resonance between the (0, 1) -  and ( 1 ,  0)- 
modes in the circular cylinder, the gauge was 4 mm from the endwall, in the point of 
maximum displacement of the (1 ,  0)-mode; hence, the gauge location depended on 
the orientation of the (1 ,  0)-mode ; see $4.2. We filtered the gauge signal at 25 Hz with 
a low-pass analog filter and digitally sampled i t  a t  50 Hz with the computer. We 
determined linear growth rates by starting the wavemaker from rest and measuring 
the slope of the linear portion of the growing amplitude curve. 

For experiments on superharmonic resonance, we subtracted the cylinder motion 
from the time series before further analysis. For resonance between the (0, 1)- and (0, 
3)-modes, the gauge was in the centre of the circular cylinder. For resonance between 
the (7, 1)- and (0, 8)-modes, i t  was off-centre, at the point of maximum fluid 
displacement. For the high-mode experiments, we low-pass filtered the signal at 
100 Hz and digitally sampled it at 200 Hz. For all experiments, we complex- 
demodulated the signal a t  the two frequencies of interest to obtain the envelope time 
series of the amplitudes and phases of each mode. (See Bloomfield 1976, pp. 118-150 
for a discussion of complex demodulation.) 

We measured the long-term behaviour of the (0, 1)-( 1 ,  0) subharmonic resonance 
discussed in $4.2 as follows. We chose a grid of points throughout the measured linear 
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stability space of forcing amplitude versus Faraday-wave frequency. The computer 
limited the resolution in forcing frequency to  about 0.02 Hz, or 0.01 Hz for the 
Faraday wave and the stability space. We arbitrarily chose the resolution in forcing 
amplitude to be about 0.035 mm. We started the wavemaker from rest with 
parameters corresponding to a point on the grid. For some experiments, especially 
near the threshold, the wave required five minutes to  grow initially. The (0, 1)-wave 
grew first and became unstable to  the (1, 0)-wave. We measured time from the point 
a t  which this instability first occurred. After the waves evolved for five minutes, we 
took a 5 min, 32 s time series with 16600 points at 50 Hz. We monitored the water 
depth after every one or two experiments, depending on the time required for the 
initial growth of the Faraday wave. This procedure provided measurements, 
consistent throughout stability space, of the long-term behaviour of the wave fields, 
and also allowed time to monitor the water depth and to fix the forcing amplitude 
precisely. We then classified the response as discussed in $4.2. We emphasize then, 
that by ‘long-term’ evolution, we mean that a t  the end of our time series the wave 
field had evolved for ten minutes and thirty-two seconds, or about 2400 Faraday 
wave periods. 

4. Results of subharmonic resonance 
In  this section we present the results from experiments in which a (0, 1)-mode 

Paraday wave with frequency f resonated with its subharmonic, the (1, 0)-mode. 
Table 1 lists the parameters for the normal modes. We report the behaviour of the 
wave field first for initial times of evolution, and second for long-term evolution. 
Note that, in this section, a subscript of 2 signifies the normal mode of the Faraday 
wave ; a subscript of 1 signifies the normal mode of its subharmonic ; and the forcing 
frequency approximates 2f2 = 4fi. 

4.1. Linear behaviour 
Figure 1 shows the predicted and measured neutral stability curves for the excitation 
of the (0, 1)-mode. The frequency of the minimum of the neutral stability curve 
corresponds to the natural frequency f z  of the Faraday wave. The predicted natural 
frequency is 4.10 Hz, about 0.8% less than the measured value of 4.135 Hz. The 
predicted threshold amplitudes (10) agree fairly well for f < f z  and overpredict 
amplitudes for f > fz. The predicted, minimum threshold amplitude of 0.263 mm is 
about 9 %  higher than the measured value of 0.240 mm. Note that the (0, 1)-mode 
invades the stability space of the predicted (3, 0)-mode. This result contrasts with 
our earlier experiments on the neutral stability of single-mode Faraday waves 
(Henderson & Miles 1990) and with the experiments on superharmonic resonance 
discussed in $5, in which the theory correctly predicts the excitation of the (3, 0)- 
mode. Figure 1 also shows the measured hysteresis curve obtained as described in $3. 
The hysteresis and neutral stability curves coalesce at the minimum point, a result 
also observed by Simonelli & Gollub (1989), and are about the same for f > f2. We 
note that for f < f2 the usual scenario for hysteresis was present; the (steady) wave 
amplitudes decreased with decreasing forcing amplitude. However, for f > f2 the 
waves exhibited large modulations whose amplitudes and periods changed with 
decreasing forcing amplitude. These more complicated dynamics may have caused 
the convergence of the neutral stability and hysteresis curves in our experiments. 

Figure 2 shows the measured and predicted growth rates of the (0, 1)-mode when 
the forcing amplitude was 0.352 mm. The error bars indicate the standard deviation 
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FIGURE 1. Stability space of forcing amplitude as a function of the (0, 1)-mode Faraday-wave 
frequency for h = 0.760 cm. -, predicted neutral stability curve for the (0, 1)-mode; 0 ,  
measured neutral stability curve ; 0, measured hysteresis curve ; ---, predicted neutral stability 
curve for the (3, 0)-mode with k,, = 1.13 rad/cm. 
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FIGURE 2. Linear growth rates of the (0, 1)-mode Faraday wave as a function of its 
frequency for h = 0.760 cm. -, predictions; 0 ,  measurements. 

h k,/(mode) f 2  k,/(mode) fl Verlective 

(cm) (rad/cm) (Hz) 8, (rad/cm) (Hz) 8, (cm2/s) 
0.76 1.03 4.10 0.018 0.49 2.05 0.027 0.010 

(03 1) (1, 0) 
TABLE 1. Parameters and normal modes for the experiments on subharmonic resonance. The 
subscript 2 indicates the parameter appropriate for the normal mode of the Faraday wave. The 
subscript 1 indicates the parameter appropriate for the normal mode of its subharmonic. 
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FIGURE 3. Measured stability space of forcing amplitude as a function of Faraday-wave frequency 
for the long-term behaviour of the subharmonic resonance between the (0, 1)- and (l,O)-modes with 
h = 0.760 cm. Each region marks a different type of wave response: NW, no waves; B, breaking 
waves; SS, steady-state amplitudes ; Q ,  quasi-periodic amplitudes ; T, threshold behaviour ; SP, 
single-period amplitude modulations ; DP, double-period amplitude modulations ; C, chaotic 
amplitude modulations. Symbols represent the locations of experiments that provide boundaries 
between the regions. The four diamonds inside the Q region and the one inside the SP region are 
locations of wave fields with double-period amplitude modulations (in addition to the ones that 
occurred in the DP region). 

for each experiment. Contact-line effects and defects in the glass walls were 
presumably responsible for these large deviations. The measured growth rate near 
the natural frequency is about 1.6 times larger than predicted. This discrepancy is 
probably due, at least in part, to the neglect (in the theory) of higher-order terms in 
wave amplitude. We note that the growth of the (0, 1)-wave was indeed linear for 
about the first 75 % of its growth, with the rate presented in figure 2 ; the rate usually 
increased slightly for about the final 25% of the wave's growth. The initial growth 
of the (1 ,  0)-mode began when the Faraday wave had achieved a maximum 
amplitude. I ts  growth was not linear and was about five times that of the Faraday 
wave. 

4.2. Nonlinear behaviour 
In  this section we discuss the long term behaviour, represented in figure 3, of the 
Faraday wave and its subharmonic. There the small circles along the region marked 
NW (for no waves) are the data points shown as solid circles in figure 1. They 
separate regions in which no waves were excited from those in which waves were 
excited. We identified the behaviour of the waves after excitation by the regions 
shown above the small circles. Each region is separated from its neighbours by 
symbols that represent the locations of boundary experiments in this stability space. 
We have shown only the locations of the experiments that  delineate the borders and 
have not included the location of experiments throughout the regions within these 
borders. However, one can see the resolution in frequency by the symbols at the top 
of the T region and the resolution in forcing amplitude by the column of triangles 
along the left border of the SP region. As described in $3, we examined the wave field 
evolution for about ten minutes. Hence, figure 3 represents a snapshot of stability 
space after about ten minutes of wave-field evolution. We do not believe it would 
change significantly after another five or ten minutes of wave evolution, but 
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FIGURE 5. Phase 8pace of the amplitude of the (0, 1)-mode as a function of the amplitude 
of the (1, 0)-mode ; fo,l = 4.078 Hz, a, = 0.442 mm. 

evaporation might induce significant changes after half an hour or more. We remark 
that, for the most part, the orientation of the (1, 0)-mode was constant throughout 
a particular experiment (after an initial transient) ; exceptions included some wave 
fields in the threshold and chaos regions. Figure 4 ( a )  shows a plan view of the circular 
cylinder with the two most common orientations of the (1, 0)-mode relative to the 
cylinder support. For most of the experiments 8 was about 45". Figure 4(b)  shows the 
observed orientation for the experiments in 54.2. The plus and minus orientations are 

FIGURE 4. Most common orientations of the ( 1 ,  0)-mode. (a) Schematic plan view of the circular 
cylinder on its support; -, orientation with +6; ---, orientation with - B .  (b) Location in 
stability space of the boundary -, between the + O  and -6 orientations for the experiments 
represented in figure 3. 
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FIGURE 6. Measured steady-state amplitudes of the wave fields from the SS region as a function of 
Faraday-wave frequency for the different forcing amplitudes as indicated. The solid symbols 
represent a,, the amplitudes of the (1 ,  0)-mode; the hollow symbols represent a*, the amplitudes 
of the Faraday wave, the (0, 1)-mode. 

almost symmetric about the minimum of the neutral stability curve. A 180' rotation 
of the cylinder did not affect either the orientation of the (1, 0)-mode or the regions 
in figure 3. We also note that the boundaries shown in figure 3 were reproducible, 
although the individual attractors in phase space for experiments within the 
boundaries were not always reproducible. 

The region marked T (for threshold) in figure 3 contained wave fields that did not 
achieve an asymptotic behaviour. They typically grew for a few minutes and quickly 
died. Minutes later, they would recur, as though from a plane surface, and quickly 
die again. Hence, we could say nothing definitive about the long-term behaviour of 
waves in this region. 

The waves in the region marked SS (for steady-state) had amplitudes that 
achieved steady values. Two experiments in this region had equilibrium amplitudes 
that suddenly jumped to new equilibrium amplitudes. Figure 5 shows the phase 
space, with modal amplitudes as the variables, for one such case. Here, the trajectory 
visited each fixed point for about three minutes. The modal amplitudes of the other 
experiments in this region are shown in figure 6 for different forcing amplitudes as a 
function of the corresponding Faraday-wave frequency. In general the wave 
amplitudes decreased as the frequencies increased and departed from the threshold 
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FIQURE 7 .  Measured wave slopes for the breaking waves corresponding to the hexagonal 

symbols in figure 3 as a function of the tuning parameter for the Faraday wave. 

curve, toward the natural frequency. The Faraday wave usually had an amplitude 
less than that of its subharmonic ; however, in some instances, such as in figures 6 ( c )  
and 6 ( d ) ,  these two roles were briefly reversed. Figures 6(c ) -6 ( f )  show that the 
amplitudes of the two modes seemed to converge as the frequencies approached f2. 

For f < f2 the (l,O)-mode reached a maximum amplitude of about 7 mm, which was 
close to the water depth of 7.6 mm. We remark that these wave fields were probably 
not in the putative range of validity of the weakly nonlinear theory. The predicted 
amplitudes for most of this parameter range are unstable to Hopf bifurcations and 
are smaller than those measured. 

As indicated by the region marked B (for breaking) the steady waves ultimately 
reached a state for which the (0, 1)-mode wave started to break. We define breaking 
to mean that the (0, 1)-mode actually threw up drops of water. This definition is 
objective, since such behaviour is obvious to the eye and causes a high-frequency 
jitter to the otherwise steady time series; i t  does not include plunging or spilling 
waves. Figure 7 shows the slope of the (0, 1)-mode as a function of its frequency offset 
for the experiments located by the hexagonal symbols in figure 3. There appears to 
be a linear relationship between the slope and the frequency offset. For previous 
experiments on the (0, 1)-mode with no resonance present (Henderson & Miles 1990), 
the wave slopes were as large as 0.95 without breaking. The presence of an additional 
mode clearly affects the breaking criteria. We also note that the breaking waves are 
associated with steady-state motions, rather than chaotic motions. 

Figure 8 shows some typical experimental results from the remaining four regions. 
(Note, these are representative experiments, not a sequence of experiments resulting 
from small increments in one of the parameters.) Here, column e shows the phase 
space with amplitudes as the coordinates; column f shows phase space with the 
(dimensional) amplitude of the cosine part of the time series; column g shows the 
power spectra of the attractor. (The spectra are computed from a time series of the 
total energy of the system equal to E,(15a) +E2(15b)  ; the frequencies of the carrier 
waves are filtered out.) Columns e and g provide necessary information concerning the 
behaviour of the modal amplitudes. Column f does not provide obvious information 
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FIGURE 8. Representative measurements of phase-space trajectories and spectra for experiments 
in the SP region (row a :  fo,l = 4.182 Hz, a, = 0.405 mm), the DP region (row b :  fo,l = 4.164 Hz, 
a, = 0.405 mm), the Q region (row c:f,,, = 4.164 Hz, a, = 0.544 mm) and the C region (row d:f,,, = 
4.255 Hz, a, = 0.508 mm) of figure 3. Column e contains the amplitude-phase space; column f 
contains the dimensional p-phase space ; and column g contains the power spectra of the attractors. 

on the behaviour of the modal amplitudes. Nevertheless, these attractors are of 
interest because they provide phase information that may be predicted, and because 
they are often symmetric about p1 = 0. 

Row a is a typical result from the region marked SP (for single period) of figure 3, 
where the modal amplitudes modulated with a single period. We note that the 
modulations of the fundamental followed those of the Faraday wave by about 90'. 
Ciliberto k Gollub (1984) also observed a 90' phase shift for 1 : 1 mode competition 
between the (7, 2)- and (4, 3)-modes in a circular cylinder. There is a limit cycle in 
amplitude-phase space, and the spectra is narrow-banded with one peak and its 
superharmonics. The attractor in p-phase space appeared for many of the wave 
fields, but a variety of other attractors also appeared. Figure 9 shows the measured 
frequencies of the limit cycles of all of the experiments in the SP region as a function 
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FIQURE 9. Measured and predicted frequencies of the limit cycles from the experiments in the SP 
region of figure 3. Each set of symbols represents experiments with given forcing amplitudes and 
different frequencies : , a, = 0.300 mm ; 0,  a, = 0.334 mm ; , a, = 0.369 mm ; 0,  a, = 
0.405 mm; A, a, = 0.442 mm; ., a, = 0.474 mm; A, a, = 0.508 mm; 0, a, = 0.544 mm. 

of the limit-cycle frequency predicted by (16). The measured frequencies are spread 
consistently along the 45' line with a 0.5 Hz shift. In these calculations, we use the 
measured natural frequency of 4.135 Hz (the frequency corresponding to the 
minimum point in the measured neutral stability curve of figure 1 ) .  If we use the 
predicted value of 4.10 Hz, then predictions of limit-cycle frequencies are undefined 
for ten of the experiments. We remark that D (from 14c) is negative for these 
experiments, thus Hopf bifurcations and limit cycles are possible ; however, 
numerical integrations of (7) using the experimental values for a and /3 yield chaotic, 
rather than limit-cycle solutions. 

Row b of figure 8 is a result from the region marked DP (for double period) ; in 
which the modal amplitudes exhibited period-doubling modulations. The result 
shown in row b is the best of the DP region in that the modulation amplitudes were 
constant during the measurement period, whereas the modulation amplitudes for 
other experiments in this region were not quite constant. (The diamonds outside the 
DP region represent additional experiments in which the (constant) modulation 
amplitudes had a double period.) Thus, many of the attractors in this region had 
finite widths not present for the one in row b. Nevertheless, all the waves in this 
region exhibited a double-looped limit cycle in amplitude-phase space, and the 
spectra showed that the frequencies of the attractors were in a 2 :  1 ratio. The 
attractor in p-phase space varied for each wave field. 

Waves in the region marked Q (for quasi-periodic) exhibited three types of 
behaviour. Either they had single-period or double-period limit cycles with varying 
amplitudes (that still gave dominant peaks in the spectra), or (more rarely) they 
jumped from one attractor to some other attractor. Row c shows a case in which the 
wave-field amplitude modulated with a dominant periodicity that is evident in the 
spectrum. The modulation amplitude was not constant, thus the limit-cycle in 
amplitude-phase space has a finite width, as does the attractor in p-phase space. The 
final region of figure 3, marked C (for chaos), occurred along the boundary of the 
neutral stability curve for f > fi. We note that much of this region is outside the 
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FIGURE 10. p-phase space from numerics and from experiments: ( a )  numerics: a, = 1.444, a, = 
0.962, /3, = -0.416, b2 = -1.177; ( b )  experiments: a, = 0.790, a, = 1.053, /3, = 0.685, p2 = 1.192, 
a, = 0.508 mmrffardng = 8.382 Hz; (c) numerics: a, = 0.991, a, = 1.321, /3, = 0.405, /3, = 0.582; ( d )  
experiments: a, = 0.847, a, = 1.129, /3, = 0.670, , = 1.148, a, = 0.474 mm, fiorcinB = 8.364 Hz. 

predicted neutral stability curve. A typical result from this region is shown in row d 
of figure 8. The trajectories in amplitude-phase space are beginning to fill up the 
phase space ; the symmetry of the attractor in p-phase space is no longer apparent ; 
and the spectrum is broadbanded without recognizable peaks. We calculated the 
largest Lyapunov exponent for data in the C region using the fixed-time evolution 
program of Wolfe et al. (1985). The exponents were positive, about 0.1 bit/s, but we 
were unable to establish any clear relationship with the frequency offset parameters. 

The stability criteria of (14) predict that the fixed points of (12) and (13) should 
be stable near the threshold boundaries for f < fi and f > f2; in between, Hopf 
bifurcations are possible. Although these predictions are not fully realized in the 
experiments, we can learn more from numerical integration of the evolution 
equations. Figures 10 ( a )  and 10 (c) show two examples of p-phase space trajectories 
from numerical integrations of (7),  while figures l O ( b )  and 10(d) show similar 
trajectories from experiments. We note that the input parameters for the numerics 
and for the experiments are not the same; nevertheless, we show these results 
because of the similarities in the attractors. We did not calculate lengthscales for the 
numerical result of figure lO(a), since the damping parameters, a, and a2, could not 
correspond to experimental values. This attractor was first found by Becker & Miles 
(1986) for integrations of (7) with a, = a2 = 1.0 and /3, = = 0.48. The a in figure 
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10 ( c )  correspond to experiments with a forcing amplitude of a,, = 0.405 mm. We note 
that additional attractors found in the numerics were not observed in the 
experiments. Similarly, many attractors appeared in the experiments for which we 
found no theoretical counterparts. 

5. Results of experiments on superharmonic resonance 
We now describe the results of experiments on the resonance between a Faraday 

wave with frequency f and its superharmonic. We examined both low-mode and 
high-mode resonances. Table 2 lists the normal modes closest to  resonance. Here the 
subscript 1 represents the normal mode of the Faraday wave, the subscript 2 
represents the normal mode of its superharmonic, and the forcing frequency 
approximates f2  = 2fi. 

5.1 Low-mode superharmonic resonance 

To examine the possible resonance between a (0 ,  1)-mode and a (0, 3)-mode, we 
sequentially measured : (i) the neutral stability curve, (ii) time series for wave fields 
with a fixed forcing amplitude, but varying forcing frequency, and (iii) time series for 
wave fields with a fixed forcing frequency but varying forcing amplitudes. The 
measured neutral stability curve and the location of the additional experiments in 
stability space are presented in figure 11. We note that the theoretical curve slightly 
overpredicts the threshold amplitudes for all frequencies, but correctly predicts the 
natural frequency of the (0, 1)-mode. 

Figure 12 shows time series of amplitudes of the Faraday wave and its 
superharmonic with a stretched interval (figure 12 b)  for the initial, transient region. 
This experiment corresponds to  the first square symbol of figure 11. Resonance is 
observed here in the transient region of evolution as a phase shift between the two 
modes. As in the experiments of $4.2 and those of Ciliberto & Gollub (1984), the 
phase shift is about 90". (In non-resonant experiments, the superharmonic always 
had the same phase as the fundamental.) The waves quickly stopped the low- 
frequency modulations and developed a high-frequency modulation that was due to 
a precession instability of the (0, 1)-mode. Figure 13 shows a sample of the precession 
instability for the experiment corresponding to the second triangle in figure 11. This 
higher-frequency modulation retained the phase shift observed in the transient 
region, as well as its lower-frequency modulation. 

As frequency was increased along the square symbols in figure 11, the initial 
modulations of the modal amplitudes became more in phase; at f = 4.639 Hz the 
modulations were in phase. This wave field was the one that most closely 
corresponded to the theoretical 2 : 1 resonance. The amplitudes and durations of the 
initial modulations began to lessen as the frequency further increased along the 
square symbols, until at the last symbol, at threshold, no initial modulations were 
present. In addition, as frequency was increased along the square symbols, the 
magnitude of the precession instability decreased and disappeared a t  f = 4.596 Hz. 
When the frequency was fixed and the forcing amplitude was increased, the 
precession instability either occurred or became stronger, and the duration of the 
initial modulations increased. 

We believe that the observed phase shift between the modulations of the two 
modes is evidence of the 2 : 1 resonance. However, we note that the modulations last 
only tens of seconds and that the amplitude of the superharmonic never becomes 
comparable with that of the fundamental. 
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FIGURE 1 1 .  Stability space of forcing amplitude as a function of the (0, 1)-mode Faraday-wave's 
frequency for experiments on low-mode superharmonic resonance with h = 1.15 cm; -, 
predicted and 0 ,  measured neutral stability curve of the (0, 1)-mode; ---, predicted neutral 
stability curve of the (3,0)-mode; ., location of experiments with a, = 0.300 mm; V, location of 
additional experiments. 
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FIGURE 12. Time series of the amplitudes of the Faraday wave and its superharmonic (a), 

with a close-up of the transient region (b) : fo,l = 4.553 Hz, a, = 0.300 mm. 

k,l(mode) fl k,/(mode) f 2  "effective 

(cm) (rad/cm) (Hz) 8, (rad/cm) (Hz) 8, (cm2/s) 
1.15 1.03 4.64 0.015 2.14 9.28 0.018 0.016 

2.04 3.47 11.12 0.029 6.95 22.24 0.037 0.030 
(0, 1 )  (0, 3) 

(73 1) (0, 8) 
TABLE 2. Parameters and normal modes for the experiments on superharmonic resonance. The 
subscript 1 indicates the parameter appropriate for the normal mode of the Faraday wave. The 
subscript 2 indicates the parameter appropriate for the normal mode of its superharmonic. 
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FIGURE 13. Time series of the amplitudes of the Faraday wave and its superharmonic 
during a precession instability : j,,* = 4.574 Hz, a, = 0.320 mm. 
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FIGURE 14. Stability space of forcing amplitude as a function of the Faraday wave frequency for 
experiments on high-mode superharmonic resonance with h = 2.040 cm ; -, predicted neutral 
stability curves of the normal modes near the resonant one; ---, neutral stability curve for the 
normal mode most closely approximating 2 : 1 resonance ; , location of experiments. 

5.2.  High-mode superharmonic resonance 

The experiments discussed in this section are a standing-wave analog of Wilton’s 
ripple (Wilton 1915), for which a progressive wave in deep water has a superharmonic 
whose frequency and wavenumber satisfy the linear dispersion relation ( i ) ,  are in a 
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FIGURE 15. Time series of the amplitudes of the Faraday wave and its superharmonic with 
h = 2.040 cm ; f,,l = 11.355 Hz and a, = 0.098 mm. 

2 : 1 ratio with the fundamental, and are thus able to resonate. Previous experiments 
on progressive Wilton's ripples (e.g. McGoldrick 1970) were hampered by viscous 
effects. Hence, our objective was to examine Wilton's ripple in a standing-wave 
system, in which viscosity would enter the calculation for the normal modes and 
evolution equations, but would not detune the normal modes during evolution. The 
experimental parameters and normal modes for the present experiments that most 
closely approximate Wilton's ripple are listed in table 2. 

Figure 14 shows the location in stability space of the high-mode experiments. The 
density of curves shows that many spatial modes exist that have frequencies close to 
that of the calculated frequency for resonance. When the wave fields were steady, the 
amplitude of the superharmonic was an order of magnitude smaller than that of the 
fundamental (as also was true for non-resonant cases). When the wave fields were 
unsteady, the modulations of the superharmonic were often out of phase from those 
of the fundamental. This phase shift, which is not present for non-resonant waves, 
indicates an energy exchange between the two modes ; as the subharmonic mode loses 
amplitude, its superharmonic gains amplitude and vice versa. Figure 15 shows the 
best measurement of the energy exchange. Note that the phase shift is 180", unlike 
the experiments from $4.2 and $5.1, where the phase shift was 90'. The 180" shift is 
predicted by resonant interaction theory (e.g. Simmons 1969) for the energy 
exchange between Wilton's ripple and its superharmonic. We emphasize that this 
energy exchange was transient and not reproducible for particular forcing 
parameters. As the forcing amplitude was increased and many Faraday-wave modes 
were present, the modal amplitudes of the two waves modulated randomly, 
sometimes in phase, sometimes not. As with the steady waves, the amplitude of the 
superharmonic never became comparable with that of the fundamental. 
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FIGURE 16. Stability space of forcing amplitude as a function of the Faraday wave frequency for 
experiments on high-mode superharmonic resonance in the rectangular container with h = 
0.750 cm ; -, predicted neutral stability curves of the normal modes near the resonant one ; ---, 
neutral stability curve for the normal mode most closely approximating 2 : 1 resonance ; location of 
experiments for 0 ,  the (9, O)-mode ., the (10, 0)-mode V, the (11, 0)-mode and 0,  multiple 
modes. 

h k,/(mode) f, k,/(mode) f, "erleetive 

(cm) (rad/cm) (Hz) 6, (rad/cm) (Hz) 6, (cm2/4 
0.75 3.54 10.99 0.051 7.08 22.01 0.067 0.10 

(10, 0) (20, 0) 
TABLE 3. Parameters and normal modes for the experiments on superharmonic resonance in the 
rectangular cylinder. The subscript 1 indicates the parameter appropriate for the normal mode of 
the Faraday wave. The subscript 2 indicates the parameter appropriate for the normal mode of its 
superharmonic. 

Appendix. Experiments on superharmonic resonance in the rectangular 
cylinder 

For a rectangular cylinder with cross-sectional area ab, the wavenumber of the ( I ,  
m)-mode, k,, = L ( l n / ~ ) ~  + (mn/b)2]i, is related to the frequency by (1). For super- 
harmonic resonance f, = 2f , ,  and k, = k,,,, must equal 2k, = 2k,,; hence, 
superharmonic resonance in a rectangular cylinder is always analogous to Wilton's 
ripple. For surface waves, this situation is possible only if surface tension is a 
restoring force ; hence, superharmonic resonance is not possible for gravity waves in 
a rectangular cylinder. For the rectangular cylinder used here with cross-sectional 
dimensions of 8.870 cm x 3.205 em, superharmonic resonance was only possible for 
high modes. The experimental parameters and normal modes most closely 
approximating resonance are given in table 3. 

Figure 16 shows the location in stability space of the experiments. A broad band 
of frequencies was investigated for wave fields in the rectangular geometry because 
the determination of the damping rate for this geometry (and thus for the resonant 
normal modes) was more uncertain than it was for waves in the circular cylinder (see 
Henderson & Miles 1990). We note that in these experiments the wave field was 
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usually a one-dimensional mode, although many two-dimensional modes were 
available for excitation. The single-mode, (9, 0)- and (11, 0)-mode, wave fields were 
usually steady, with the amplitude of the superharmonic an order of magnitude less 
than that of the fundamental. Multi-mode wave fields were often modulated ; the 
wave field periodically alternated between two (Faraday) modes, and the location of 
the wave gauge alternated between anti-node and node. (See Cililberto & Gollub 
(1985) for experiments on 1 : 1 mode competition of waves in a circular cylinder.) 
Many of the (10, 0)-mode wave fields also exhibited modulations. In  these 
experiments the (10, 0)-mode seemed to decay and grow periodically. Figure 17 
shows an example of these modulations. Note that the superharmonic is in phase 
with the fundamental ; hence, we do not believe these modulations are the result of 
superharmonic resonance. The most likely explanation appears to  be 1 : l  mode 
competition, although no other mode was visible during the decay part of the cycle. 
Two gauges would be needed to  verify this conjecture. In brief, we did not observe 
the phase shift expected from a resonant interaction in any of the experiments 
conducted in the rectangular cylinder. 
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FIQURE 17. Time series of the amplitudes of the Faraday wave and its superharmonic in 
the rectangular cylinder with h = 0.750 cm ; fro,, = 10.731 Hz, a, = 0.131 mm. 
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